Configuration file

The configuration file contains various settings and parameters that control the behavior and settings of the project. Refer to the config-template.yaml file for more information.

dataset

Parameter
Type
Description

annot_dir

path

Slide annotations directory path. Should have the same names as that in slide_dir.

create_zip

bool

Bundle the created dataset directory in a ZIP for easier download.

data_dir_name

str

Used to create dataset/{data_dir_name}/.

downsample_factor

int

Downsample slides resolution by this factor. Defaults to preserve aspect ratio.

downsample_size

tuple[int, int]

Downsample slides to this size.

n_splits

int

Number of splits for cross-validation.

overlap

bool

Overlap factor for extracting patches. Should be between 0 and 1.

patch_size

tuple[int, int]

Patch size for the patches.

save_slides

bool

Whether to save slides, in dataset/{data_dir_name}-slides/.

slide_dir

path

Slides directory path. Corresponding annotations should be in annot_dir.

use_augment

bool

Whether to use data augmentation at patch level for the train split. Preferably always use as True.

gpu

Parameter
Type
Description

device_index

int

Device index for the GPU. Set to -1 to disable GPU and use CPU instead.

heatmaps

Parameter
Type
Description

alpha

float

Heatmap transparency while overlaying on the slide. Should be between 0 and 1.

blur

tuple[int, int]

Gaussian blur kernel size for the heatmap.

cmap

str

Colormap for the heatmap. Refer to matplotlib colormaps.

downsample_factor

int

Downsample slides resolution by this factor (when source_dir is provided).

downsample_size

tuple[int, int]

Downsample slides to this size (when source_dir is provided).

file_extension

str

File extension for the heatmap images to be saved.

invert_preds

bool

Whether to invert the predictions before making the heatmaps. Default is true.

overlap

float

Overlap factor for the heatmap patches. Should be between 0 and 1.

patch_dims

tuple[int, int, int]

Patch dimensions for the heatmap.

percentile_scale

tuple[int, int]

Scale the heatmap values to percentile using numpy.percentile().

percentile_score

bool

Use percentile score for scaling the heatmap values using scipy.stats.percentileofscore().

save_dir

path

Directory to save the heatmap images. Will be saved at {exp_base_dir}/{exp_name}/{fold-*}/{save_dir}/.

source_dir

path

Path to the directory containing the slides. Used to get predictions for the heatmap.

source_dir_annot

path

Path to the directory containing annotations corresponding to slides in source_dir. Set to null to use slides themselves for heatmaps.

use_plt

bool

Use matplotlib to generate the heatmap images. If false, heatmaps will match original slide dimensions.

model

_select

Parameter
Type
Description

classifier

str

Model to use for training and inference. Options: {CLAM_SB, EfficientNetB0, MobileNet, ResNet50, VGG16}.

model-CLAM_SB

Parameter
Type
Description

k_sample

null

dropout

null

learning_rate

null

loss_weights

dict

Keys: bag, instance

patience

null

run_eagerly

null

model-EfficientNetB0, model-MobileNet, model-ResNet50, model-VGG16

Parameter
Type
Description

freeze_ratio

null

learning_rate

null

patience

null

start_from_epoch

null

trainer

Parameter
Type
Description

batch_size

int

Batch size for training.

data_dir

path

Path to the directory containing the dataset. Should likely be dataset/{data_dir_name}/.

evaluate_only

bool

Evaluate the model on the test set only. Useful for evaluating a trained model.

exp_base_dir

path

Base directory containing all the experiment folders. Usually experiments/.

exp_name

str

Current experiment name. Will create a directory in exp_base_dir ({exp_base_dir}/{exp_name}/).

features_dir

path

Path to the directory containing the features, particularly for MIL datasets.

folds

list[int]

List of folds to be considered. Zero-indexed.

max_epochs

int

Maximum number of epochs to train the model.

overwrite_preds

bool

Overwrite predictions if already present in {exp_base_dir}/{exp_name}/{fold-*}/preds.csv.

patch_dims

tuple[int, int, int]

Patch dimensions of the dataset.

predictions_file

string

Filename of the predictions CSV file, without the extension.

save_weights_only

bool

Save only the model's weights during checkpointing. Useful for subclassed models in tf.keras.

subset_size

int

Subset size of the dataset to use for training. Use null to use the entire dataset.

use_augment

bool

Whether to use augmented dataset for training (dataset/{data_dir_name}/fold-*/{train}/).

Last updated